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SIGNIFICANCE AND EXPLANATION

Semilinear heat equations (that is heat equations perturbed by a non-

linearity just acting on the solution but not on its derivatives) occur in

many applications: for example in combustion theory, or in population

genetics ... One of the main problems concerning this type of problem is to

determine the asymptotic behavior of solutions (when the time t - -). In

this paper, assuming that the nonlinearity is convex, a complete description

of the asymptotic behavior of solutions is given including in particular a

precise determination of the global stability of steady state solutions.
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ASYMPTOTIC BEHAVIOR OF SOME NONLINEAR HEAT EQUATIONS

P. L. Lions (*

Introduction:

The goal of this paper is to give a complete description of the asymptotic

behavior of the solution u(t,x) as t + of the following nonlinear heat

equation:

{ u Au = f(u) in (0,-) xOf

u(t,x) = 0 on NY , u(0,x) = u 0(x)

where f is some convex nonlinearity, and Y is a bounded, regular and con-

nected domain in IRN.

To illustrate our result let us consider the following equation

au Au = u in (0,-) xat

u(t,x) = 0 on 3 , u(0,x) = u0 (x)

we denote by K the set of initial data u (x) on W0  IV E(W{v E W
00

v = 0 on W) such that the solution u(t,x) of (1) exists for all t > 0

and remains bounded uniformly in t > 0.

Then we prove

i) K is an unbounded, convex set and 0 E K

ii) If u is a non-trivial stationary solution i.e. if u satisfies:

(*)C.N.R.S., and Universite P. et M. Curie, 4 Place Jussieu, 75230 Paris Cedex 05,

France.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



f(2) - = u in , u g (T , u 0 on 3 , u 1 0

theni u is an extremal point of K,

iil) if u is in K without being an extremal point of K, then
0

u(t,x) c K for all t > 0 and u(t,x) -- 0

i-i uxanjlles are given after the general statement of Theorem II.1 (in particular
2

ti: : where U is replaced by XeU)

Lviouslv this result shows that every non-trivial solution of (2) is

i jV1 \m,;table (in the context of (1)): remark the fact that u is unstable

(,)
(in th: linearized sense at least) is probably well-known ; but we give here

vor. prc ciso picture of that instability. In particular the result above

-;::(ws 'hat qgnerically (with respect to u0 ), u(t,x) does not converge to any

sliution of (2).

Section T is devoted to our main result, while in section II we give some

extensiorls and some variants of our results.

Let us finally indicate that we do not consider here the existence problem

of solutions of (2) (or related problems); for these we refer to P. H. Rabinowitz

[17]; A. Anbrosetti and P. H. Rabinowitz [1]; H. Brezis and R. E. L. Turner !8];

D. S. De Fiqueiredo, R. D. Nussbaum and P. L. Lions [11]; H. Berestycki and

.L. Lions [6].

did not find a rrcise reference for that, but it is somewhat straight-

forwardl to prove.
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I Main results.

I.1: Notations and assumptions.

Let OY be a bounded, regular, connected domain in JRN. Let f be a

C2  function from IR into IR satisfying

(3) f is strictly convex, and f'(O) < X1 I f(O) = 0

where A is the first eigenvalue of -A in O, with Dirichlet boundary
1

conditions.

We will consider the following nonlinear heat equation:

t Au= f(u) t > 0 , x €

(4)

u(t,x) = 0 on 8& for t > 0 , u(t,0) = u0 (x) in ;

where u0  is some given function in X = 0

It is well-known that for any u there exists a unique local solution
0

to (4) (that is for t r [O,t max ) and tmax depends on u 0 ) and

u(t,x) C2'1 ,( x [0,T]) (for any T < tma x and for any a < 1).

On the other hand u(t,x) may not exist for all t > 0 since there may

be blow-up in finite time (see for example J. M. Ball [3]). Thus, of particular

interest for the asymptotic behavior of u(t,x) is the following set of

initial conditions:

K = fu0: X, such that there exists a unique solution of (4) for all

t > 0 and lu(t,x)l < C (indep. of t > 0 and x in 3}

Then, we have

Th_orem 1.1: Under assumption (3), we have

-3-



o

i) K is convex, unbounded; 0 c K; if u0 E K, then for all v < u0,

v E K; in addition, if we denote by S(v) = _ L Vv, 2 dx - f F(v)dx where

t
F(t) = f f(s)ds, then we have

0

S(v) > 0, for all v in K - {0}

ii) If u is a non-trivial stationary solution of (4) i.e. if u

satisfies

(5) -Au = f(u) in (, u = 0 on , u ( ) , u 1 0

then u(x) > 0 for x in 0 and u is an extremal point of K.

iii) If u0 E K and if u0 is not an extremal point of K then the

0

corresponding solution u(t,x) of (4) belongs to K, for all t > 0.

0 2-
iv) Moreover if u0 E K, then u(t,x) - 0 (in C (0)).

Remark I.l: The assumption of convexity for f is essential (except for some

arguments of the proof of (iv)), and we will explain in section II what

happens if we no longer assume f(0) = 0 or f'(0) < Xl'

Remark 1.2: This result shows that the only way to approach a non-trivial

solution of (5) via the evolution problem (4) is to start with u0 being an

extremal point of K and to stay for all t > 0 in the set of extremal points

of K. In particular generically (with respect to u0  in X) u(t,x) does
o

not converge to a solution of (5): indeed K u (X - K) is a dense open set of

X on which u(t,x) either goes to 0, or is unbounded.

Remark 1.3: We may extend the above result, by replacing -6 by a more

general second-order elliptic operator and the Dirichlet boundary conditions by

-4-
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other types of boundary conditions. Finally one can allow f to depend also

on x; but we will not consider such obvious extensions.

While the proof of statements i) - iii) is fairly easy, the proof of iv)

will involve some technicalities. In 1.2 below, we prove i) - iii); and in 1.3

some preliminary results are proved; finally in 1.4 we prove iv).

1.2: Geometrical properties of K:

For u0  in K, we will denote by S(t)u 0 
= u(t,x) the solution of (4).

Proof of i):

Let u0 , v0 be in K and let 0 < e < 1, since f is convex one has

dd (S(t)u + (1 - e)S(t)v 0 ) - A (S(t)u + (1 - e)S(t)v 0 ) =
dt0 0 0 0

8f(S(t)u0 ) + (1 - e)f(S(t)v 0 ) > f(es(t)u0 + (I - e)S(t)v0))

thus if w(t,x) is the maximal solution of (4) with eu0 + (1 - e)v0  as

initial data, one has by well-known comparison theorems w(t,x) < OS(t)u 0 +

(1 - O)S(v)v 0 < C for all x in LY and t < t .- - max

Now since f (0) < X' we have

dw _ Aw = f(w) > f'(0)w

and this implies w(t,x) > - C. And this proves that K is convex.

To prove that if u0  K and if v < u0  then v E K, one just needs

to remark that by the above proof for all v one has a bound from below for the

solution v(t,x) of (4) with initial data v, while if v < u0 with u0  K

then

-5-
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v(t,x) < S(t)u 0

applying again comparison results.
0

Now let us prove that 0 E K, indeed if v1  satisfies:

- Av = V in V , v E C2( , v1 > 0 in r , vI = 0 on

for E small enough, we deduce

_ACv = (EV) > f,(CVl)EV1 > f(Cv)

Thus, S(t)(Lvl) > cvI  for all t > 0 and v 1 c K

Applying what we proved above, we get that

I = {w E X , w < Ev c K

And this set I is a neighborhood (in X) of 0 (since vl(X) > 0 in O*" and

V1

by Hopf maximum principl? < -a < 0 on D, where n is the unit

outward normal to

To prove that S(v) > 0, for all v in K - {0}; we first show that

S(v) > 0 for v in K. Indeed if we admit iv) and if we remark that

0
S(u(tx)) is nonincreasing (multiply (4) by l ), then for all u0  in K we have

S(u ) > 0

$0
Since R = K, the claim is provpd. Now, suppose that for some v in K,

Since = K t cbviulai is( = panv d Ntupse-I- tat for somHee v i K,

dt
S~)=0: nbviously S(S(t)v) = 0 and thus S(t)v = 0. Hence v is a

stationary solution. But if v 1 0, we have, since f is convex

f ?vj2 dx, (v)vdx >2f F(v) dx

and w- concludc.

-6-



Proof of ii): Let u(x) be a solution of (5) and let us prove first that

u > 0. Indeed multiply (5) by u (= max(-u,0)) and integrate by parts, we

obtain

2
-f jVu- dx= f f(-u-)u- dx

&I &

but f(t) > f'(O)t and the above equality yields:

-2 2
I Vu- dx < f'(0) I lu dx

since we assume f'(0) < Al, this implies u = 0 that is u > 0.

Next, we prove u is an extremal point of K: we argue by contradiction.

There exist u0 , v0  in K, e E (0,1) such that:

u = eu 0 + (1 - 8)v 0

We already saw that 6S(t)u 0 + (1 - 6)S(t)v = w(t,x) satisfies:

(5) - - Aw > f(w) in (0,=) x 0'

actually since f is strictly convex, this inequality is strict.

On the other hand w(0,x) = u(x) and u satisfiesiTh
2-- u =-Au = f(u)

thus wo know not only that w(t,x) > u(x), but also by the strong maximum

principle and Hopf principle:

w(t,x) > u(x) in (0,o) x
(6)

n (t,x) < 2n (x) in (0,-) x e

-7-



Next, multiply (5) by u(u >0) and (4) by w;

dfw(t,x)u(x)dx > f f(w(t,x))u(x) -f(u(x))w(t,x)dx

=f (f(W(tS~X)) -f(u(x))wtxuxd

f -w(t,x) ux))w(tx)ux)d

and this quantity is nonnegative since f is convex and w > u > 0. Hence

f w~t,x)u(x)dx I M and M > f u Cx)dx.
tP +Mo

To conclude, we admit for the moment the two lemmas which follow:

Lemma 1.1: If u 0 E K, then (S(t)u ,t > 0) is relatively compact in X.

And if we denote by w(u 0) the w-limit set of u 0  that is the set of u

in X such that there exists a sequence t I + - satisfying

S(t )u 0-* U

then W(u 0) is a compact, connected subset of X and for all u in W(u0

u satisfies:

-Au =f(u) i n 0'(, u C(0C)2 u =0 onD&

In addition, d(S(t)u ) f0.

Lemma 1.2: If u,v r C 2(&w) satisfy: u > v > 0, v X 0

- Au > f(u) in u , u0 on3&
(7)

- Av <f(v) in v, v=0 on

then v u.



Now, if we apply Lemma I.1, we find that there exists t - such that

S(tn )u 0(x) u(x), S(t )v (x) -) v(x); and ui, v are stationary solutions of
X X

(4). Therefor, w(tnX) - el + (1 - q)v and M = f (u + (1 - )v)u dx,

X CT

OU + (1 - 6)v > u. Since M > f u2 dx, eu + (1 - 6)v 7 u. Finally, we just

need to remark that - L(Ou + (I - 6)v) = 6f(u) + (1 - 6)f(v) > f(eu + (I -

and a straightforward application of Lemma 1.2 yields the desired contradiction.

The proofs abov Lemmas are given in 1.3. We will not give the proof of

iii) since it is the same as the argument which enables us to prove (6) above.

Let us finally observe that the use of the convexity in the arguments above is

somewhat reminiscent of H. Berestycki [5].

1.3: Some preliminary results:

Proof of Lemma I.l: The first part of Lemma I.1 is well-known (see for example

C. M. Dafermos [10]) since u0 E K implies (by definition fIu(t,x) I2 < C
C (1

(for example) for t > 1). Thus, we just need to prove that _ S(t)u 0 ) 0.
dt 0

Indeed, remark first that we have (setting u = S(t)u0 ) 10lC0- 11

2

< C, for t > 1 and a < 1.
Dt C 0'a )

On the other hand, we have

~d__ti2 f L 1Vu2 ,
t i V-f F(u)} 2 - 2

where F(t) = f f(s)ds. In other words 1 IVuI 2  F(u) is a Liapunov
0 2 L

functional.

-9-
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Thus f 2 d< ,and since by the above estimates du L2 is

f dt 2 j'12

0 L L

a uniformly continuous function on [0,-), we deduce:

L2

du
T----- 

0

dt

d u 0C 
0'

Since 1 is bounded in C0'O(' for any a < 1, this implies: dtU0

(for a < 1).

Proof of Lemma 1.2: This result is well-known but we make the proof for the

sake of completeness. Multiply by v, u (7):

f f(u)v dx < f f(v)u dx

or

f f(u) - f(v))u v dx < 0

U v

(when v or u = 0, -- ~- is to be understood as f'(0)), since 0 < v < u,
V

v 0 0 and f is strictly convex, this implies u v.

Before going into the proof of iv), we state and prove some preliminary

results of independent interest:

Lemma 1.3: Let u0 be in K, if 0 E w(u0 ) then w(u0 ) = {0} i.e.

t4

u(t,x) = S(t)u(x) - + 0
X

Proof: It is well-known (see for example H. Br4zis and R. E. L. Turner [8])

that since f' (0) < ? there exists a > 0, such that1

fl 0' for any u solution of (5)

-10-



Now remarking that U E W(U 0 ) implies u _=0 or u is a solution of (5), we

just need to invoke Lemma I.1 and the fact that wu0 is connected.

We need some notations in order to state the next result: if c(x)E c(a)

we will denote by X (c) the first eigenvalue of the problem:

A -u = cu + X 1 u in f0r, u E W 2 ,p(eA (p <

u =0 on a

And v 1(c) will be the corresponding positive normalized eigenfunction:

AV1()= cv 1 (c) + A 1 V(c) in ty , v (c) E W pp < w)P

V1()= 0 on v' v(c) >0 in (Y v 1v(c) 12 +

It is well-known that if c - c, then X:(c) X (ic) and

2,
V 1(C n 1 c nW A eky (

Wneed the following result

Lemma 1.4: Let c(t,x) 6 C b([0,1'[ x~ 6) , we assume

()C(.,X) E C ([0,-[) and - c(t,x) E C b ([0,-E
at

Then X (c(t)) r C b([0,-D[) and

(* b denotes the space of bounded continuous functions on



(9) (X (x1 C~t W f (L c(t) I V(c (t))2 dx

In addition - V (c(t)) exists, is bounded independently of t > 0 and is

continuous in t~ 10: v av (c(t)) solves the problem

f AV' (ct)+C= (c(t)) + (X (c(t)) + c(t))vi in
I at 111

(10)

(vI'v)L 2 A 0 , V! E W 2,(' O)(p < ),v' =0 on a5

Finally, if we assume in addition: 2-(c(t,x)) -~0; then

dt Xl1(c(t)) 0 ,v 0 (at least in

Before going into the proof of Lemma 1.4, we state and prove a simple application

Corollary 1.1: Let u0 E X, u0 L 0, u0 X 0 and let c(t,x) in C(Oo)xT

______0 cb(t0') 0.

satisfying (8) and - ~~) 0

Let u(t,x) satisfy:

aD_ ctxu 2,1,p fo-jat Au>_~~~ in (0,-) x C/ E W ((0,T) X~)frT<~

u(t,x) = 0 on Dff , u(0,x) = u 0(W

If we assume that X (c(t)) < -ai 0 for t > t 0 then u(t,x) +

uniformly on compact subsets of .

Proof of Corollary 1.1: A tedious (but straightforward) argument yields that,

by the strong maximum principle, there exists 8> 0 such that

-12-
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v1 (t,x) > 8v1 (Cx) in e , where vl(t,x) = vl(c(t)) (x)

By assumption and by Lmma 1.4: (t,x) - 0. Thus, for t > ti , we

have v <_ V-

at-2 v1( 1 )o

av1
(t,x) < -V ( t , x )

Now let T = max(t0 t1 ,, by the strong maximum principle and Hopf principle we

may assume that

u(T,x) > yvl(T,x) (for small enough y > 0)

We finally introduce 0(t,x) = ye (t-T)/2 v (t,x) (for t > T) and we

compute:

av
de - t(t-T)/ 2  1t- -A - c ~ = 6 + Yea8- +  A(c(t))O

@v
cdt-T)/2 1

<-- 8 + ye - < 0 , for t > T
- 2 at-

and 8(T,x) = yv1 (T,x) < u(T,x).

Therefore u(t,x) > G(t,x), for t > T, x in a. In particular

u(t.x) >. Oye (t- T)/ 2 v1 (0,x) for t > T.

We next turn to the proof of Lemma 1.4:

Proof of Lemma 1.4: We will denote by A (t) = X (c(t)) and vl(t,x) =

V (c(t))(x). Recall that A (t) is given by

1 ( t )  min f -Vv1
2  f c(t,x)v2 dx

IvI 2=+1 e
L1

v H1

-13-



Therefore for h > 0 (for example)

1 (t+h) W 1 t c(t,x) (vl(t,x)) 2 dx - f c(t+h,x)(v (t,x))2 dx

h -h C
ac2

and the right-hand side term goes to - I - (v (t)) dx as h - 0. On the

other hand

A1 (t+h) h X 1 ( c(tx)(vl(t+hx))2  dx - f c(t+hx)(v (t+hx)) 2 dx

and again the right-hand side term goes to - 1 (V1 (t)) dx as h - 0,

since v (t + h,x) - vl (t,x). This proves (9) and the first part of Lemma 1.4.
h-0 av1

We next prove that v' = - exists and is given by (10). Let h > 0 and
1 at

hlet t > 0, we denote by vI = V1 (t,x) and vh = V (t + h,x). We have

obviously

h hv I - v  X (t + h) - X(t) c(t + h) -c(t) vI +v
1 h I I h + h }( +

h h

A (t + h) + c(t + h) v I - v  X (t) + c(t) v - v
(10') + 2 h + 2 ( 1 h

h h h
1 - v -v 1  v 1 + v 1

h 0 h 2 L 2

Since

X (t + h) + Al (t)1 ~= Al~c(t + h) +- c(t)

2 1 2

h
v1 + v

1 = v(c(t + h) + c(t)
2 1  2

we deduce easily

-14-



h

Vl "-Vl C

1 hiV L 2  
h Ch
2 - 1

where

h c(t + h) + c(t) h
Xi 1 2 ) and X2 is the second eigenvalue of

the problem

AV = Xv + c(t + h) + c(t) v in 1-1v in 4 2 vE€H 0 )

h h

If we prove that X h X is bounded away from zero when h - 0, by (10)
2 1

hV v
we deduce that 1 is bounded in H2 (6 and by a bootstrap argument in

h

w2 'P (M (p < -), it is then obvious to pass to the limit and to obtain (10).

Finally proving the remaining part of the Lemma is straightforward provided we

show quantities like Xh _ Xh is bounded away from 0showquatitis lke 2 -11

In other words, we want to prove that if cn C( n in C)

n n

then 2(cn) -A 1(c) > a > 0, indep. of n.

n
Let us argue by contradiction: replacing if necessary c by a subsequence

nnwe may assume that XA (c n 1 (c n ) 0, and thus

2 (cn) 1 (c)

6n 1n nNow let H be the 2-dimensional subspace of H generated by vI, v where
0 1 2n ni (c n

v is an eigenfunction corresponding to A (c and v2  to A.(cn) Then

we have,

jv2 c ~2(n) 1

max v 2 
- c(x)vA dx + + - c.

2Iw

Lv 2=1

i1

;- ------15-.- -



by the variational characterization of A 2 (c), this yields:

A2 (c) < A2 (c) + li cn - C 11®

which contradicts the fact that 2(c) > A (c).

1.4: Asymptotic behavior:
0

We now give the proof of part iv) of Theorem 1.1: let u0 E K, we denote0

by u(t,x) = S(t)u 0(x). Since u0 E K, there exists v0 E K, v0 > u0  and
v 0 0

v u0  We denote by v(t,x) =S(t)v Wx.

Let us argue by contradiction: u(t,x) -- 0; then by Lemma 1.3 0 w w(u0).0

In addition w(t,x) = v(t,x) - u(t,x) satisfies:

jd - Aw (flY) - f(u))w in (0,=) x
dt v - u

w(O,x) = v0 - u0  , w(t,x) = 0 on (0,0) x Ur

We are going to apply Corollary I.1 with c(t,x) = f'(u(t,x)).

Indeed v(t,x) > u(t,x), and therefore (f(v) - f(u))w > f, (u)w. Inv - u

addition

t-O-

c(t,x) = f"(u(t,x))2u 0 in C(
at at

in view of Lemma I.l.

Therefore in order to apply Corollary I.1, we need to check that

(12) A (f'(u(t,x))) < -a < 0 , for t > t
1 -0

Assume this is proved; then by Corollary I.1, w(t,x) cannot be bounded which

contradicts the definition of w.

-16-



Now to prove (12), we need the following well-known lemma that we admit

for the moment:

Lemma 1.5: Lct C be a compact set in X consisting of solutions of (5).

Then there exists a > 0 such that

Al(f'(u(x))) < - < 0 , for every u in C.

In particular we may take C = w(u0), and by continuity there exists an open

neighborhood C of C such that

X (f ' (u(x)) < - - < 0 for every u in1 2

Now by Lemma I.1, we deduce that for t large enough u(t,x) E C. Indeed

n ({u(s,x),s >_ t) n (X - C)) = 0 and therefore {u(s,x), s > t} c C for t > T.
t>0

We conclude the proof of Theorem I.1 with the proof of Lemma 1.5.

Proof of Lemma 1.5: First, let us remark that for every solution u of (5)

one has

S(f(u(x)) 0II 1 U(x)

Then, by the well-known comparison theorems on eigenvalues, this implies

X (f'(u(x))) < 01

This proves Lemma 1.5, since A1 (f'(u(x))) depends continuously on u.

-17-
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II Some extensions and related results.

II.1: An extension of (3).

¢2
Instead of (3), we now assume that f E C ( R) and satisfies:

(13) f is strictly convex , lim f' (t) < A1
t--

We then have

Theorem II.l: Under assumption (13), we have

i) K is non-empty if and only if there exists a solution of (5)

(5) -L u=f(u) in , uEC2(6) , u = 0 on 3LY

moreover, if K 0 0, then there exists a minimum solution u of (5). In

0that case K is convex, K # 0, and if u 0 E K, v E X with v < u0 then

v E K. Furthermore we have S(u) < S(v), for all v in K - {u}.
0

ii) If K 0 0, then u E K as soon as there exists a solution of (5)

distinct from u, or as soon as A1 f'(u)) > 0

If u E ;K, then u is an extremal point of K and for all u0 in K

S(t)u0 X u.
o x

(this last statement also holds if u is the only solution of (5)).

iii) If K # 0 and u c K, then for every solution u of (5) distinct

from u, one has: u is an extremal point of K

Furthermore if u0 - K and if u0  is not an extremal point of K, then

0 
t

S(t)u o K and S (t) 0 - u

Remark II.l- Thc proof 'f Theorem 11.2 is very similar to the proof of Theorem

1.1 and wo will ri',t , i, .t. A variant of the proof of ii) in Theorem I.1 gives

that if f" is izosztivmz, and if WM(f'(u)) = 0, then u is an extremal point of K



Remark 11.2: Theorem 11.2 holds if we replace f(u) by f(x,u) assuming that
C2 , 0 '

,

f(x,.) E C ( 3) (for x in i), f(.,t) e C (a (for some 0 < a < 1 and

for all t in R) and that f satisfies:

(14) f(x,.) is strictly convex, for x in a; lim af(xt) < X1 , uniformly in xE
at

Remark II.3: If we no longer assume that lim f'(t) < X1 , we do not know if

the result still holds (actually we do not even know that K is convex).

Let us give now a few examples:

Example 1: Take f(t) = A(l + ItIp ) or f(t) = Aet (A > 0, 1 < p < 0). For

these kinds of nonlinearities, a rather detailed study of solutions of (5) is

given in I. M. Gelfand [13], D. D. Joseph and T. S. Lundgren [143, M. G. Crandall

and P. H. Rabinowitz [9), C. Bandle [4], F. Mignot and V. P. Puel [16], P. L.

Lions [15]. In particular we know there exists -* c (0,-) such that (5) has

a minimum solution u for A E (0,A*) satisfying A (f'(u )) > 0 and (5) has

no solution for X > X*. Thus if A e (0,*) iii) applies, while for X > X*

K = 0. In addition (there, the result depends on the dimension N) in many

cases it is known that for X = X*, (5) has a unique solution uA* and ii) (and

Remark II.1) applies (u,* E aK and S(t)u 0 + H,, for u0 in K).

Example 2: Take f(x,t) = f(t) + g(x) with f satisfying (13) and

A < lim f'(t) < A2, then (see [5], and [2] for another version) there exists
t

closed convex set C in C0O'a ( with C 0 such that 1) if g f" C, then

(5) has no solution and thus by Theorem I1.1 K 0; 2) if g E 3C, then (5)

has a unique solution u and thus by Theorem II.1 (part ii)), u is an

extremal point of K and S(t)u 0 - u; 3) if g C, then (5) has exactly

-19-



two distinct solutions u < u and by Theorem II.1 (parts ii) and iii)):

L K, u is an extremal point of K and if u0  is in K and is not an

extremal point of K then S(t)u - u. Remark also that Theorem II.1 applies

also to the extension of [5], [2] given in [7] (where we relax the assumption

on f at +-).

Example 3: Take f(t) = At + t2 (X R). If A < A 1, then Theorem I.1 applies.

If A = Ali then obviously 0 is the only solution of

- Au = Au + U in iY , u E C , u = 0 on 3&

Thus i) and the last part of ii) applies: 0 is an extremal point of K and

for all u0  in K, S(t)u0 - 0.

Now for A > A1 , it is quite easy to prove there exists a minimum negative

solution u which satisfies 1 (f'(u)) > 0. Then ii) and iii) apply and for

all u0  in K, u0 being not an extremal point, S(t)u 0 - L.
t)'

11.2: Iterative schemes.

We are now concerned with the convergence of schemes like

()- Aunl +Au
nl+l n n n+l 2- n+l

(15) = Au + f(un ) , U E C 2() , u = 0 on d

u is given and we assume (3), A > 0 and

(16) f(t) + At is nondecreasing for t c R

(Again we could replace (3) by more general assumptions, but we will not do it

here for the sake of simplicity).

The scheme (15) is an implicit one, "approximating (4) for t c (0,-)"

with A being the inverse of a time-step; therefore it is quite natural to ask

if one has results for (15) which are similar to Theorem I.l.
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We introduce again:

00K fu 0 X , Iun(x)I <C 0  indep. of n and x}

Then we have:

Theorem 11.2: Under &,ssumptions (3) and (16), we have

0 0

i) K is convex, unbounded; 0 E K and if u E K, v E X, v < u then

v E K; and ve. have S(v) > 0, for all v in K - {0}

ii) If u is a non-trivial solution of (4) then u is an extremal point

of K

0 0 n 0
iii) If u E K and if u is not an extremal point of K then u C K,

for n > 1.

0 0 n
iv) Moreover if u c K, then u --- 0 (in C2 ()

The proof of this result is very similar to the one of Theorem I.1 and we will

omit it.

-21-
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